Assessment Schedule - 2005

Calculus: Integrate functions and solve problems by integration, differential equations or numerical methods (90636) $\,$

Evidence Statement

	Achie vement Criteria	Q	Evidence	Code	Judgement	Sufficiency
and prol inte diff equ nun	Integrate functions and solve problems by integration, differential equations or numerical methods.	1(a)	$\frac{3}{2}e^{2x-4} + c$	A1	Or equivalent.	Achievement: 4 × code A including at least 1 × code A1 and 1 × code A2.
		1(b)	$\frac{1}{3}\cot 3x + c$	A1	Or equivalent.	
		1(c)	$7x + 4 \ln x + c$ or $7x + 4 \ln kx $	A1	Or equivalent. Accept without sign.	
		2	$\frac{10}{3} \left(0 + 4\left(11.4 + 10.8 + 19.8 + 12.9\right) + 2\left(13.2 + 15.1 + 20.1\right) + 0\right)$		(Copying error possible MEI, calculation error, N)	
			$= 1054 \frac{2}{3} \mathrm{m}^2$	A2	Or equivalent.	
Achievement		3	$\int \frac{1}{-dy} = \int (2x+1)dx$ $\ln y = x^2 + x + c$ $y = Ae^{(x^2 + x)}$ $120 = Ae^{3.36}$ $y = 4.168e^{(x^2 + x)}$ or $y = e^{(x^2 + x + 1.427)}$ or $\ln y = x^2 + x + 1.427$ or $\ln 0.2399y = x^2 + x$ or $y = 3.25e^{\frac{1}{4}(2x+1)^2}$	A2	Separation of variables must be shown; otherwise ^ NS and N at end. Or equivalent.	

	Achie vement Criteria	Q	Evidence	Code	Judgement	Sufficiency
Achievement with Merit	Find integrals and use integration to solve problems.	4(a)	$\frac{du}{dx} = 2$ $6(u+4) = 12x$ $\int 12x\sqrt{2x-4} dx$ $= \int 6(u+4)u^{\frac{1}{2}} \frac{1}{2} du$ $= \int 3u^{\frac{3}{2}} + 12u^{\frac{1}{2}} du$ $= \frac{6}{5}u^{\frac{5}{2}} + 8u^{\frac{3}{2}} + c$ $= \frac{6}{5}(2x-4)^{\frac{5}{2}} + 8(2x-4)^{\frac{3}{2}} + c$ OR Let $u = x-2$ $du = dx$ $x = u+2$ So $\int = \int 12(u+2)(2u)^{\frac{1}{2}} du$ $= \int (12\sqrt{2}u^{\frac{3}{2}} + 24\sqrt{2}u^{\frac{1}{2}}) du$ $= \frac{24\sqrt{2}}{5}u^{\frac{5}{2}} + 16\sqrt{2}(x-2)^{\frac{3}{2}} + c$ $= \frac{24\sqrt{2}}{5}(x-2)^{\frac{5}{2}} + 16\sqrt{2}(x-2)^{\frac{3}{2}} + c$ OR $u = \sqrt{2x-4}$ $u^{2} = 2x-4$ $2u du = 2 dx$ $u du = dx$ $x = \frac{u^{2}+4}{2}$ $\int = \int 6(u^{2}+4) \cdot u \cdot u du$ $= \int (6u^{4}+24u) du$ $= \frac{6}{5}u^{5}+8u^{3}+c$ $= \frac{6}{5}(2x-4)^{\frac{5}{2}}+8(2x-4)^{\frac{3}{2}}+c$ OR $4x(2x-4)^{\frac{3}{2}} - \frac{4}{5}(2x-4)^{\frac{5}{2}}+c$	A1 M	Or equivalent. Or equivalent.	Achievement with Merit: EITHER As for Achievement plus 3 × code M OR 4 × code M.
		4(b)	$4\int (\cos 4x + \cos 2x) dx$ = $\sin 4x + 2 \sin 2x + C$	A1, M	Or equivalent.	

Achie vement Criteria	Q	Evidence	Code	Judgement	Sufficiency
	5	$\frac{\mathrm{d}N}{\mathrm{d}t} = kN$ $\int \frac{1}{N} \mathrm{d}N = \int k \mathrm{d}t$		Evidence of appropriate integration required.	DE must be shown otherwise ^ NS; possible to obtain code A2 if pursue solution to the end.
		$\ln KN = kt$ $N = Ae^{kt}$ $120 = Ae^{20k}$ $85 = Ae^{32k}$		Don't penalise premature rounding.	
		$k = -0.0287367$ $120 = Ae^{-0.0287367 \times 20}$ $A = 213.199$ $30 = 213.199e^{-0.0287367t}$ $t = 68.2$	A2, M	Or equivalent.	
		Accept 68 or 69 days.			
	6	Volume = $\pi \int_3^7 (y-3) dy$ = $\pi \left[\frac{y^2}{2} - 3y \right]_3^7$ = 8π	A1	Accept any valid method. Or equivalent.	Correct integral, even if limits incorrect, replacement generates code A1.
		$= 25.13 \text{ m}^3$	A1, A2	Do not allow $y + 3$ or $\pi \int_3^7 (3 - y) dy$	The integral must be shown – otherwise ^ NS and N.

	Achie vement Criteria	Q	Evidence	Code	Judgement	Sufficiency
Achie vement with Excellence	Use a variety of integration techniques to solve problems.	7	Point of intersection of $y^2 = 6x$ and $y^2 = 36 - 9x$: $6x = 36 - 9x$ $x = \frac{36}{15}$ or 2.4 Area between the three parabolas:	A2, M, E	Accept any valid method. Accept minor arithmetic error. Or equivalent.	Achievement with Excellence: as for Merit plus code E. The integrals must be shown, and be correct, for code A1 replacement; otherwise ^ NS and N at end. All calculations must also be correct for codes E, M or A2.

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Integrate functions and solve problems by integration, differential equations or numerical methods.	Find integrals and use integration to solve problems.	Use a variety of integration techniques to solve problems(s).
4 × A including at least 1 × A1 and 1 × A2.	Achievement plus 3 × M or 4 × M	Merit <i>plus</i> 1 × E